Effect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles

Authors

  • E. Sepehr Soil Science Department, Faculty of Agriculture, Urmia University, P.O.Box 57159-44931, Urmia, Iran
  • F. Ahmadi Soil Science Department, Faculty of Agriculture, Urmia University, P.O.Box 57159-44931, Urmia, Iran
  • M. Shirzadeh Soil Science Department, Faculty of Agriculture, Urmia University, P.O.Box 57159-44931, Urmia, Iran
Abstract:

The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch experiments, fitting various isotherm models (Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich) to the equilibrium data. Saturation indices (SI) of TiO2 and γ-Al2O3 nanosorbents indicate that adsorption is a predominant mechanism for Cd (II) removal from aqueous solution, giving maximum Cd (II) adsorption rates of 3348 and 1173 mg/kg for TiO2 and γ-Al2O3 nanoparticles, respectively, both obtained at the highest pH level (pH = 8) as well as the highest initial Cd (II) concentration (equal to 80 mg/ L). Cadmium removal efficiency with TiO2 and γ-Al2O3 nanoparticles has increased by raising pH from 6 to 8. The Freundlich adsorption isotherm model could fit the experimental equilibrium data well at different pH levels. Also, it has been revealed that cadmium adsorption drops as the ionic strength is increased. The maximum Cd (II) adsorption (1625 mg/kg) has been attained at 0.01 M ionic strength in the presence of NaCl. Thermodynamic calculations demonstrate the spontaneous nature of Cd (II) adsorption by TiO2 and γ-Al2O3 nanoparticles. The former (TiO2) have high adsorption capacities, suggesting they are probably effective metal sorbents, compared to the latter (γ-Al2O3).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Influence of ionic strength, electrolyte type, and NOM on As(V) adsorption onto TiO2.

As(V) adsorption onto a commercially available TiO2 (Degussa P25) in NaCl or NaClO4 at various concentrations (0.001-0.1 M) was investigated. The effect of natural organic matter (NOM) on As(V) removal through the adsorption by TiO2 was also examined. In either electrolyte, As(V) adsorption onto TiO2 increased with the increase of ionic strength under alkaline conditions (pH 7.0-11.0). Under ac...

full text

Effect of pH and Ionic Strength on Boron Adsorption by Pyrophyllite

The negative electrical field around clay particles whose edge thickness is small relative to the Debye length of the diffuse double layer associated with the planar surfaces may spill over into the edge region. Such a spillover may affect B adsorption by the clay. This study was conducted to determine the effect of edge surface properties of 2:1 clay on B adsorption. Pyrophyllite, which shows ...

full text

effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars

این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...

effects of ph and ionic strength on boron adsorption by kaolinite

plants uptake boron (b) from the soil solution, in which boron concentration is controlled by adsorption and desorption reactions on soil organic and inorganic colloids. considering the importance of aluminosilicate minerals in ion adsorption and desorption reactions in soil, in this research, b adsorption behavior on kaolinite was studied as a function of equilibrium concentration, ph, kaolini...

full text

Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength

The adsorption of lysozyme and ß-lactoglobulin onto silica nanoparticles (diameter 21 nm) was studied in the pH range 2-11 at three different ionic strengths. Since the two proteins have a widely different isoelectric point (pI), electrostatic interactions with the negative silica surface lead to a different dependence of adsorption on pH. For lysozyme (pI ≈ 11), the adsorption level increases ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  223- 235

publication date 2020-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023